June 2025 | ||||||
Mo | Tu | We | Th | Fr | Sa | Su |
26 | 27 | 28 | 29 | 30 | 31 | 1 |
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 1 | 2 | 3 | 4 | 5 | 6 |
01: #ifndef _ASM_X86_DEBUGREG_H 02: #define _ASM_X86_DEBUGREG_H 03: 04: 05: /* Indicate the register numbers for a number of the specific 06: debug registers. Registers 0-3 contain the addresses we wish to trap on */ 07: #define DR_FIRSTADDR 0 /* u_debugreg[DR_FIRSTADDR] */ 08: #define DR_LASTADDR 3 /* u_debugreg[DR_LASTADDR] */ 09: 10: #define DR_STATUS 6 /* u_debugreg[DR_STATUS] */ 11: #define DR_CONTROL 7 /* u_debugreg[DR_CONTROL] */ 12: 13: /* Define a few things for the status register. We can use this to determine 14: which debugging register was responsible for the trap. The other bits 15: are either reserved or not of interest to us. */ 16: 17: /* Define reserved bits in DR6 which are always set to 1 */ 18: #define DR6_RESERVED (0xFFFF0FF0) 19: 20: #define DR_TRAP0 (0x1) /* db0 */ 21: #define DR_TRAP1 (0x2) /* db1 */ 22: #define DR_TRAP2 (0x4) /* db2 */ 23: #define DR_TRAP3 (0x8) /* db3 */ 24: #define DR_TRAP_BITS (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3) 25: 26: #define DR_STEP (0x4000) /* single-step */ 27: #define DR_SWITCH (0x8000) /* task switch */ 28: 29: /* Now define a bunch of things for manipulating the control register. 30: The top two bytes of the control register consist of 4 fields of 4 31: bits - each field corresponds to one of the four debug registers, 32: and indicates what types of access we trap on, and how large the data 33: field is that we are looking at */ 34: 35: #define DR_CONTROL_SHIFT 16 /* Skip this many bits in ctl register */ 36: #define DR_CONTROL_SIZE 4 /* 4 control bits per register */ 37: 38: #define DR_RW_EXECUTE (0x0) /* Settings for the access types to trap on */ 39: #define DR_RW_WRITE (0x1) 40: #define DR_RW_READ (0x3) 41: 42: #define DR_LEN_1 (0x0) /* Settings for data length to trap on */ 43: #define DR_LEN_2 (0x4) 44: #define DR_LEN_4 (0xC) 45: #define DR_LEN_8 (0x8) 46: 47: /* The low byte to the control register determine which registers are 48: enabled. There are 4 fields of two bits. One bit is "local", meaning 49: that the processor will reset the bit after a task switch and the other 50: is global meaning that we have to explicitly reset the bit. With linux, 51: you can use either one, since we explicitly zero the register when we enter 52: kernel mode. */ 53: 54: #define DR_LOCAL_ENABLE_SHIFT 0 /* Extra shift to the local enable bit */ 55: #define DR_GLOBAL_ENABLE_SHIFT 1 /* Extra shift to the global enable bit */ 56: #define DR_LOCAL_ENABLE (0x1) /* Local enable for reg 0 */ 57: #define DR_GLOBAL_ENABLE (0x2) /* Global enable for reg 0 */ 58: #define DR_ENABLE_SIZE 2 /* 2 enable bits per register */ 59: 60: #define DR_LOCAL_ENABLE_MASK (0x55) /* Set local bits for all 4 regs */ 61: #define DR_GLOBAL_ENABLE_MASK (0xAA) /* Set global bits for all 4 regs */ 62: 63: /* The second byte to the control register has a few special things. 64: We can slow the instruction pipeline for instructions coming via the 65: gdt or the ldt if we want to. I am not sure why this is an advantage */ 66: 67: #ifdef __i386__ 68: #define DR_CONTROL_RESERVED (0xFC00) /* Reserved by Intel */ 69: #else 70: #define DR_CONTROL_RESERVED (0xFFFFFFFF0000FC00UL) /* Reserved */ 71: #endif 72: 73: #define DR_LOCAL_SLOWDOWN (0x100) /* Local slow the pipeline */ 74: #define DR_GLOBAL_SLOWDOWN (0x200) /* Global slow the pipeline */ 75: 76: /* 77: * HW breakpoint additions 78: */ 79: 80: #endif /* _ASM_X86_DEBUGREG_H */ 81: