Dr Andrew Scott G7VAV

My photo
 
June 2025
Mo Tu We Th Fr Sa Su
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 1 2 3 4 5 6


debugreg.h
01: #ifndef _ASM_X86_DEBUGREG_H
02: #define _ASM_X86_DEBUGREG_H
03: 
04: 
05: /* Indicate the register numbers for a number of the specific
06:    debug registers.  Registers 0-3 contain the addresses we wish to trap on */
07: #define DR_FIRSTADDR 0        /* u_debugreg[DR_FIRSTADDR] */
08: #define DR_LASTADDR 3         /* u_debugreg[DR_LASTADDR]  */
09: 
10: #define DR_STATUS 6           /* u_debugreg[DR_STATUS]     */
11: #define DR_CONTROL 7          /* u_debugreg[DR_CONTROL] */
12: 
13: /* Define a few things for the status register.  We can use this to determine
14:    which debugging register was responsible for the trap.  The other bits
15:    are either reserved or not of interest to us. */
16: 
17: /* Define reserved bits in DR6 which are always set to 1 */
18: #define DR6_RESERVED    (0xFFFF0FF0)
19: 
20: #define DR_TRAP0        (0x1)           /* db0 */
21: #define DR_TRAP1        (0x2)           /* db1 */
22: #define DR_TRAP2        (0x4)           /* db2 */
23: #define DR_TRAP3        (0x8)           /* db3 */
24: #define DR_TRAP_BITS    (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)
25: 
26: #define DR_STEP         (0x4000)        /* single-step */
27: #define DR_SWITCH       (0x8000)        /* task switch */
28: 
29: /* Now define a bunch of things for manipulating the control register.
30:    The top two bytes of the control register consist of 4 fields of 4
31:    bits - each field corresponds to one of the four debug registers,
32:    and indicates what types of access we trap on, and how large the data
33:    field is that we are looking at */
34: 
35: #define DR_CONTROL_SHIFT 16 /* Skip this many bits in ctl register */
36: #define DR_CONTROL_SIZE 4   /* 4 control bits per register */
37: 
38: #define DR_RW_EXECUTE (0x0)   /* Settings for the access types to trap on */
39: #define DR_RW_WRITE (0x1)
40: #define DR_RW_READ (0x3)
41: 
42: #define DR_LEN_1 (0x0) /* Settings for data length to trap on */
43: #define DR_LEN_2 (0x4)
44: #define DR_LEN_4 (0xC)
45: #define DR_LEN_8 (0x8)
46: 
47: /* The low byte to the control register determine which registers are
48:    enabled.  There are 4 fields of two bits.  One bit is "local", meaning
49:    that the processor will reset the bit after a task switch and the other
50:    is global meaning that we have to explicitly reset the bit.  With linux,
51:    you can use either one, since we explicitly zero the register when we enter
52:    kernel mode. */
53: 
54: #define DR_LOCAL_ENABLE_SHIFT 0    /* Extra shift to the local enable bit */
55: #define DR_GLOBAL_ENABLE_SHIFT 1   /* Extra shift to the global enable bit */
56: #define DR_LOCAL_ENABLE (0x1)      /* Local enable for reg 0 */
57: #define DR_GLOBAL_ENABLE (0x2)     /* Global enable for reg 0 */
58: #define DR_ENABLE_SIZE 2           /* 2 enable bits per register */
59: 
60: #define DR_LOCAL_ENABLE_MASK (0x55)  /* Set  local bits for all 4 regs */
61: #define DR_GLOBAL_ENABLE_MASK (0xAA) /* Set global bits for all 4 regs */
62: 
63: /* The second byte to the control register has a few special things.
64:    We can slow the instruction pipeline for instructions coming via the
65:    gdt or the ldt if we want to.  I am not sure why this is an advantage */
66: 
67: #ifdef __i386__
68: #define DR_CONTROL_RESERVED (0xFC00) /* Reserved by Intel */
69: #else
70: #define DR_CONTROL_RESERVED (0xFFFFFFFF0000FC00UL) /* Reserved */
71: #endif
72: 
73: #define DR_LOCAL_SLOWDOWN (0x100)   /* Local slow the pipeline */
74: #define DR_GLOBAL_SLOWDOWN (0x200)  /* Global slow the pipeline */
75: 
76: /*
77:  * HW breakpoint additions
78:  */
79: 
80: #endif /* _ASM_X86_DEBUGREG_H */
81: 


for client (none)
© Andrew Scott 2006 - 2025,
All Rights Reserved
http://www.andrew-scott.uk/
Andrew Scott
http://www.andrew-scott.co.uk/